metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Madhukar Hemamalini,^a Packianathan Thomas Muthiah^a* and Ray J. Butcher^b

^aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu, India, and ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA

Correspondence e-mail: tommtrichy@yahoo.co.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.045 wR factor = 0.115 Data-to-parameter ratio = 20.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetraaquadithiocyanatonickel(II) tetrakis-(2-amino-4,6-dimethylpyrimidine) dihydrate

In the title complex, $[Ni(NCS)_2(H_2O)_4]\cdot 4C_6H_9N_3\cdot 2H_2O$, the nickel(II) ion occupies an inversion centre and is octahedrally coordinated by two N-bonded thiocyanate ions and four water molecules. The two distinct 2-amino-4,6-dimethylpyrimidine molecules adopt distinct base-pairing dimerization patterns *via* different pairs of N-H···N bonds. They are also hydrogen bonded to the coordinated and uncoordinated water molecules and thiocyanate ions through O-H···O, O-H···S(thiocyanate) and N-H···N(thiocyanate) hydrogen bonds.

Comment

Studies of hydrogen-bonding interactions between substituted pyrimidines and coordinated ligands are of current interest (Suksangpanya *et al.*, 2004) and we have recently described the structure of 2-amino-4,6-dimethylpyrimidinium bromide 2-amino-4,6-dimethylpyrimidine monohydrate (Panneerselvam *et al.*, 2004). The present study of the title compound, (I), is aimed at gaining a better understanding of the interplay of metal-coordination and hydrogen-bonding interactions in these types of materials.

The asymmetric unit of (I) contains two 2-amino-4,6-dimethylpyrimidine molecules, one coordinated thiocyanate ion, two coordinated water molecules, an uncoordinated water molecule and a nickel ion lying on a crystallographic inversion centre (Fig. 1). The environment about the nickel ion is octahedral with two thiocyanate ions and two pairs of water molecules completing the coordination. The water molecule O atoms are positioned in the equatorial plane of the octahedron, while the *N*-monodentate thiocyanate ions occupy the axial positions. The nickel–ligand bond distances (Table 1) agree with those reported for similar systems (Abul-Haj *et al.*,

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 22 November 2004 Accepted 20 December 2004 Online 8 January 2005

Figure 1

View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. [Atoms with the suffix a are generated by the symmetry code 1 - x, -y, 1 - z.]

Figure 2

A chain in (I) made up of $Ni(NCS)_2(H_2O)_4$ molecules and uncoordinated water molecules, linked by hydrogen bonds (dashed lines).

2000). The thiocyanate ligand is almost linear $[(N-C-S) = 179.2 (2)^{\circ}]$.

The 2-amino-4,6-dimethylpyrimidine molecules are not coordinated to nickel, but are hydrogen bonded to the coordinated water molecule, uncoordinated water molecules and thiocyanate ions (Table 2). The non-coordinated water molecule (O3) accepts H bonds from the coordinated water molecules (O1 and O2) and acts as a donor to nearby S atoms, forming $O-H\cdots$ S hydrogen bonds, leading to a chain along the *a* axis, as shown in Fig. 2. The pyrimidine N atom N3 acts as a hydrogen-bond acceptor from both the coordinated water molecule (O1) and uncoordinated water molecule (O3). The pyrimidine N atom N1A also accepts a hydrogen bond from the coordinated water molecule, O2 (Fig. 3).

Two kinds of base-pairing interactions are observed for the 2-amino-4,6-dimethylpyrimidine species. Molecule A is paired about an inversion centre through a pair of N2A – H21A···N3A hydrogen bonds, whereas the other 2-amino-4,6-

Figure 3

Fragment of (I), illustrating the hydrogen bonding (dashed lines) of the pyrimidine molecules with the coordinated ligands and the uncoordinated water molecules. Symmetry code as in Table 2.

A view of the molecular packing in (I). Dashed lines indicate hydrogen bonds.

dimethylpyrimidine is paired about an inversion centre through a pair of $N2-H2B\cdots N1$ hydrogen bonds. The former mode of pairing has been already observed in trimethoprim sulfate trihydrate (Muthiah *et al.*, 2001) and the latter mode has been noted in the structure of pyrimethamine (Sethuraman & Muthiah, 2001). Molecule *A* interacts with the metal atom *via* the coordinated water molecule (O2) by O– $H\cdots N$ hydrogen bonds and through $N-H\cdots N(NCS)$ hydrogen bonds involving the 2-amino H atom (H22B) and the N atom of the thiocyanate ligand. A view of the crystal packing is shown in Fig. 4.

The existence of $\pi \cdots \pi$ interactions can also be inferred in (I). The (N1,N3/C1–C4) and (N1A,N3A/C1A–C4A) pyrimidine rings have a perpendicular separation of 3.515 Å, a centroid-to-centroid distance of 3.554 (14) Å and a slip angle (the angle between the centroid vector and the normal to the

plane) of 8.4°. These values are typical for aromatic $\pi \cdots \pi$ stacking interactions (Hunter, 1994).

Compounds related to (I) include a nickel(II) thiocyanate complex of bis(3-aminopropyl)methylamine (Mukherjee *et al.*, 1999), diaquabis(4,5-dihydro-1,2,4-triazolo-1,5-pyrimidin-5-one)bis(thiocyanato)nickel(II) (Abul-Haj *et al.*, 2000), and *trans*-bis(diethanolamine)bis(isothiocyanato)nickel(II) (Yilmaz *et al.*, 2000).

Experimental

An aqueous solution of $[Ni(NO_3)_2] \cdot 6H_2O$ (72.71 mg in 5 ml of water) was added to a solution of NH₄CNS (76.1 mg in 5 ml of water). The mixture was stirred for 20 min. The 2-amino-4,6-dimethyl pyrimidine ligand (63.25 mg dissolved in 10 ml of methanol) was added slowly to this mixture. The resultant solution was stirred for 20 min and then filtered. After a few days, pale green crystals of (I) were obtained from the filtrate (on slow evaporation at room temperature).

Crystal data

[Ni(NCS) ₂ (H ₂ O) ₄]·4C ₆ H ₉ N ₃ ·2H ₂ O $M_r = 775.61$ Triclinic, $P\overline{1}$ a = 7.8006 (5) Å b = 11.6289 (8) Å c = 11.9121 (8) Å $\alpha = 67.701$ (1)° $\beta = 75.488$ (1)° $\gamma = 78.896$ (1)° V = 962.12 (11) Å ³	Z = 1 $D_x = 1.339 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 7595 reflections $\theta = 1.9-28.3^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 293 (2) K Plate, pale green $0.66 \times 0.60 \times 0.15 \text{ mm}$
Data collection	
Bruker SMART CCD diffractometer ω scans Absorption correction: refined from ΔF (<i>SHELXA</i> ; Bruker, 2001) $T_{min} = 0.667, T_{max} = 0.906$ 7595 measured reflections	4605 independent reflections 3465 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 28.3^{\circ}$ $h = -10 \rightarrow 10$ $k = -14 \rightarrow 15$ $l = -15 \rightarrow 14$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.115$ S = 1.05 4605 reflections 227 parameters H-atom parameters constrained	$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0548P)^2 \\ &+ 0.1851P] \\ &\text{where } P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} = 0.23 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} = -0.25 \text{ e } \text{\AA}^{-3} \end{split}$

Table 1

Selected bond lengths (Å).

Ni-O1	2.0731 (17)	Ni-N4	2.058 (2)
Ni-O2	2.0728 (16)		

Table 2

H	lyd	rogen-	bonding	geometry	(A,	°)).
---	-----	--------	---------	----------	-----	----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2B\cdots N1^{i}$	0.86	2.18	3.040 (3)	175
$O1-H11\cdots N3$	0.90	1.92	2.816 (3)	174
O1−H12···O3 ⁱⁱ	0.92	1.94	2.818 (3)	159
$O2-H21\cdots O3^{iii}$	0.91	1.94	2.836 (3)	168
$N2A - H21A \cdots N3A^{iv}$	0.86	2.16	2.997 (3)	164
$O2-H22\cdots N1A$	0.93	1.82	2.736 (3)	170
$N2A - H22B \cdot \cdot \cdot N4$	0.86	2.48	3.322 (3)	167
O3−H31···N3	0.92	2.26	3.137 (3)	158
$O3-H32\cdots S1^{v}$	0.95	2.52	3.377 (3)	150

Symmetry codes: (i) 1-x, -y, 2-z; (ii) 2-x, -y, 1-z; (iii) x-1, y, z; (iv) 1-x, 1-y, 1-z; (v) 1-x, -y, 1-z.

The H atoms of the water molecules were located in a difference Fourier map and refined as riding in their as-found relative positions. Other H atoms were placed in idealized locations [d(C-H) = 0.93 Å-0.96 Å and d(N-H) = 0.86 Å] and refined as riding on their carrier atoms. The constraint $U_{\rm iso}(H) = 1.2U_{\rm eq}(\text{carrier})$ or $1.5U_{\rm eq}(\text{methyl} \text{ carrier})$ was applied as appropriate.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* and *SHELXTL* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

MH thanks the Council of Scientific and Industrial Research (CSIR), India for the award of a Senior Research Fellowship (SRF) [reference No. 9/475(123) EMR–I].

References

Abul-Haj, M., Quiros, M. & Salai, J. M. (2000). Acta Cryst. C56, 934–935.

- Bruker (2001). SMART, SAINT, SHELXTL and SHELXA. Bruker Axs Inc., Madison, Wisconsin, USA.
- Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.
- Mukherjee, A. K., Nayak, N. P., Mondal, A. & Chaudhuri, N. R. (1999). Acta Cryst. C55, 365–368.
- Muthiah, P. T., Umadevi, B., Stanley, N., Shui, X. & Eggleston, D. S. (2001). Acta Cryst. E57, 01179–01182.
- Panneerselvam, P., Muthiah, P. T. & Francis, S. (2004). Acta Cryst. E60, 0747– 0749.
- Sethuraman, V. & Muthiah, P. T. (2002). Acta Cryst. E58, 0817-0818.

Sheldrick, G. M. (1997). *SHELXS*97 and *SHELXL*97. University of Göttingen, Germany.

- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Suksangpanya, V., Blake, J. A., Hubberstey, P. & Wilson, C. (2004). CrystEngComm, 6, 70-76.
- Yilmaz, V. T., Karadag, A., Thone, C. & Herbst-Irmes, R. (2000). Acta Cryst. C56, 948–949.